q -Serre relations in $\mathrm{U}_{\mathrm{q}}\left(\mathrm{u}_{\mathrm{n}}\right)$ and q -deformed meson mass sum rules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L91
(http://iopscience.iop.org/0305-4470/27/3/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

q-Serre relations in $U_{q}\left(u_{n}\right)$ and q-deformed meson mass sum rules

A M Gavrilik
Institute for Theoretical Physics, 252143 Kiev, Ukraine

Received 19 November 1993

Abstract

The q-Serre relations are shown to be necessary for fixing uniquely the value of deformation parameters within recently proposed applications of quantum algebras $U_{q}\left(u_{n}\right)$ in obtaining q-analogues of hadron mass sum rules. Coefficients in these q-analogues are expressed through Alexander polynomials of certain knots.

Use of the quantum algebra $s u_{q}(2)$ in describing spectra of heavy nuclei is based on such requisites as the Casimir operator and Clebsch-Gordan coefficients [1-2]. In attempting to find applications of higher-rank quantum algebras, one encounters new features absent in $s u_{q}(2)$ case. One such feature is the necessity to deal with non-simple-root elements of those algebras or, equivalently, with q-Serre relations. A recently proposed application of the q-algebras $U_{q}\left(u_{n}\right)$ to obtain q-analogues of hadron mass relations [3] uses both simpleroot elements and non-simple-root elements. The goal of the present letter is to clarify the concrete role played by the q-Serre relations for that specific application.

There exist different approaches to $S U(n)$ symmetry breaking necessary for obtaining mass sum rules (MSRs) for hadrons with n quark flavours. The approach based on dynamical unitary groups allows one to obtain [4-5] the following series of MSRs for vector mesons $1^{-}(2<n \leqslant 6):$

$$
\begin{equation*}
\frac{k(k-1)}{2} m_{\omega_{k^{2}-1}}+\frac{k(k-1)-4}{2} m_{\rho}=(k-1)^{2} m_{D_{k}^{*}}+\sum_{i=3}^{k-1} m_{D_{i}^{*}} \quad k=3, \ldots, n \tag{1}
\end{equation*}
$$

where D_{k}^{*} denote the isodoublets $D_{3}^{*} \equiv K^{*}, D_{4}^{*} \equiv D^{*}, D_{5}^{*} \equiv D_{b}^{*}$ and $D_{6}^{*} \equiv D_{r}^{*}$. If $n=3$, this series begins with the famous Gell-Mann-Okubo (GMO) mass relation [6] $3 m_{\omega_{8}}+m_{\rho}=4 m_{K^{*}}$. A comparison of this octet MSR with the existing data requires mixing between the isosinglet ω_{8} and the $S U(3)$ singlet, that is, ω_{8} is considered as a superposition of ϕ and ω with some mixing angle determined from the fit. Likewise, in cases of more flavours, $n>3$, one needs $n-2$ mixing angles.

Extending that approach to quantum algebras $U_{q}\left(s u_{n}\right)$, one can derive q-deformed MSRs which contain equations (1) as the $q=1$ limit, but which also admit (if $|q|=1, q \neq \pm 1$) an alternative treatment [3] without manifest singlet mixing. Let us consider some facts.

Quantum (universal enveloping) algebras $U_{q}\left(g l_{n}\right)$ are generated by the elements $1, A_{j j}$, $A_{j j+1}, A_{j+1 j}, j=1,2, \ldots, n-1$, which satisfy the relations [7]

$$
\begin{align*}
& {\left[A_{i i}, A_{j j}\right]=0} \\
& {\left[A_{i i}, A_{j j+1}\right]=\delta_{i j} A_{i j+1}-\delta_{i j+1} A_{j i}} \\
& {\left[A_{i i}, A_{j+1 j}\right]=\delta_{i j+1} A_{i j}-\delta_{i j} A_{j+1 i}} \tag{3}\\
& {\left[A_{i i+1}, A_{j+1 j}\right]=\delta_{i j}\left[A_{i i}-A_{i+1 i+1}\right]_{q}} \\
& {\left[A_{i i+1}, A_{j j+1}\right]=\left[A_{i+1 i}, A_{j+1 j}\right]=0 \quad \text { for } \quad|i-j| \geqslant 2}
\end{align*}
$$

and the q-Serre relations

$$
\begin{align*}
& \left(A_{i \mp 1 i}\right)^{2} A_{i i \pm 1}-[2]_{q} A_{i \mp 1 i} A_{i i \pm 1} A_{i \mp 1 i}+A_{i i \pm 1}\left(A_{i \neq 1 i}\right)^{2}=0 \tag{4a}\\
& \left(A_{i i \pm 1}\right)^{2} A_{i \mp 1 i}-[2]_{q} A_{i i \pm 1} A_{i \neq 1 i} A_{i i \pm 1}+A_{i \mp 1 i}\left(A_{i i \pm 1}\right)^{2}=0 \tag{4b}
\end{align*}
$$

where we denoted $[B]_{q} \equiv\left(q^{B}-q^{-B}\right) /\left(q-q^{-1}\right)$. The 'compact' quantum algebra $U_{q}\left(u_{n}\right)$ is singled out by means of the ${ }^{*}$-operation

$$
\begin{equation*}
\left(A_{j j}\right)^{*}=A_{j j} \quad\left(A_{j+1 j}\right)^{*}=A_{j j+1} \quad\left(A_{j j+1}\right)^{*}=A_{j+1 j} \tag{5}
\end{equation*}
$$

As for the non-deformed algebra u_{n}, finite-dimensional representations of $U_{q}\left(u_{n}\right)$ are given by sets of ordered integers $m_{n}=\left(m_{1 n}, m_{2 n}, \ldots, m_{n n}\right)$ and realized by means of the (q analogue of) Gel'fand-Tsetlin basis and formulas. Representation formulas for $A_{i i}$ remain unchanged, and $A_{k k+1}, A_{k+1 k}, k=1, \ldots, n-1$, act according to formulas given in [7]. To possess action formulas for the operators which correspond to non-simple-root elements, we turn to q-Serre relations (4). Defining

$$
\begin{align*}
& A_{k k+2}=A_{k k+2}(q) \equiv q^{1 / 2} A_{k k+1} A_{k+1 k+2}-q^{-1 / 2} A_{k+1 k+2} A_{k k+1} \tag{6a}\\
& A_{k+2, k}=A_{k+2, k}(q) \equiv q^{1 / 2} A_{k+1 k} A_{k+2, k+1}-q^{-1 / 2} A_{k+2, k+1} A_{k+1 k} \tag{6b}
\end{align*}
$$

we find that the corresponding q-Serre relations (e.g. with upper signs in (4a), (4b)) follow from the commutation rules (CR)

$$
\begin{align*}
& q^{1 / 2} A_{k+1 k+2} A_{k k+2}-q^{-1 / 2} A_{k k+2} A_{k+1 k+2}=0 \tag{7a}\\
& q^{1 / 2} A_{k k+2} A_{k k+1}-q^{-1 / 2} A_{k k+1} A_{k k+2}=0 \tag{7b}
\end{align*}
$$

Dual definitions $\bar{A}_{k k+2} \equiv-A_{k k+2}\left(q^{-1}\right), \tilde{A}_{k+2, k} \equiv-A_{k+2, k}\left(q^{-1}\right)$ are paired with the respective dual CRS. Operators for other non-simple-root elements are treated similarly.

A mass operator commuting with the 'isospin' $U_{q}\left(s u_{2}\right)$ for $3 \leqslant n \leqslant 6$ has the form [3]

$$
\begin{align*}
\hat{M}_{n}=M_{o}^{(n)}+ & \gamma_{n} A_{n n+1} A_{n+1 n}+\delta_{n} A_{n+1 n} A_{n n+1} \\
& +\sum_{i=3}^{n-1}\left(\gamma_{i} A_{i n+1} \tilde{A}_{n+1 i}+\delta_{i} \tilde{A}_{n+1 i} A_{i n+1}+\tilde{\gamma}_{i} \tilde{A}_{i n+1} A_{n+1 i}+\tilde{\delta}_{i} A_{n+1 i} \tilde{A}_{i n+1}\right) \tag{8}
\end{align*}
$$

It is Hermitean, term by term, if q is real. For $q=e^{i h}, h \in \boldsymbol{R}$, Hermiticity of mass operator requires that $\gamma_{i}=\tilde{\gamma}_{i}, \delta_{i}=\tilde{\delta}_{i}$. The latter choice is preferable for us.

With (8), using (Gelfand-Tsetlin basis) states for mesons from ($n^{2}-1$)-plet of 'flavour' $U_{q}\left(u_{n}\right)$ embedded into an $\left\{(n+1)^{2}-1\right\}$-plet of 'dynamical' $U_{q}\left(u_{n+1}\right)$, one obtains

$$
\begin{align*}
& m_{\rho}=M_{0} \quad m_{K^{*}}=M_{0}-\gamma_{3} \quad m_{K^{*}}=M_{0}-\delta_{3} \\
& m_{\omega_{0}}=M_{0}-\frac{[2]_{q}}{[3]_{q}}\left(\gamma_{3}+\delta_{3}\right) \tag{9}\\
& m_{D^{*}}=M_{0}+\gamma_{4} \quad m_{\bar{D}^{*}}=M_{0}+\delta_{4} \quad m_{F^{*}}=M_{0}-\delta_{3}+\gamma_{4} \quad m_{F^{*}}=M_{0}-\gamma_{3}+\delta_{4} \\
& m_{\omega_{15}}=M_{0}+\left([2]_{q}-\frac{[3]_{q}}{[4]_{q}}-\frac{[4]_{q}}{[3]_{q}}\right)\left(\gamma_{3}+\delta_{3}\right)+\frac{[3]_{q}}{[4]_{q}}\left(\gamma_{4}+\delta_{4}\right)
\end{align*}
$$

in the four-flavour case and analogous expressions for $n=5$ and $n=6$ (the first four relations in (9) reproduce also the three-flavour case). The q-dependence appears only in the masses of $\omega_{8}, \omega_{15}, \omega_{24}, \omega_{35}$. Since (isodoublet) particles and their antiparticles must have equal masses, $\gamma_{3}=\delta_{3}, \gamma_{4}=\delta_{4}$ in (9), and likewise for $n=5,6$. The resulting q-MSRs [3] are
$[n]_{(q)} m_{\omega_{n^{2}-1}}+\left(b_{n ; q}+2 n-4\right) m_{\rho}=2 m_{D_{n}^{*}}+\left(c_{n ; q}+2\right) \sum_{r=3}^{n-1} m_{D_{*}^{*}}$
where the notation $[n]_{q} /[n-1]_{q} \equiv[n]_{(q)}$ is used and
$b_{n ; q} \equiv n c_{n ; q}-6[n]_{(q)}^{2}+\left(\frac{24}{[2]_{q}}-1\right)[n]_{(q)} \quad c_{n ; q}=2[n]_{(q)}^{2}-\frac{8}{[2]_{q}}[n]_{(q)}$.
This set of q-deformed MSRs contains relations (1) at $q \rightarrow 1$, as it should. The q-analogues show that the coefficients with masses are obtained from their 'classical' prototypes in a more complex way than simply by replacing $a \rightarrow[a]_{q}$.

At $n=3$ equation (10) yields the q-analogue of GMO relation:

$$
\begin{equation*}
m_{\omega_{\mathrm{s}}}+\left(2 \frac{[2]_{q}}{[3]_{q}}-1\right) m_{\rho}=2 \frac{[2]_{q}}{[3]_{q}} m_{K^{*}} \tag{11}
\end{equation*}
$$

Here an important difference is apparent between the case of $n=3$ and MSRS (10) with more flavours: the q-GMO relation depends on q through the ratio [3] (q) only, while higher MSRs $(n \geqslant 4)$ contain both the ratio $[n]_{(q)}$ and the quantity $[2]_{q}$. This difference is caused by the presence of non-simple-root elements in the mass operator (8) in all cases except $n=3$. As mentioned above, definitions of non-simple-root elements and rules of their commutation with simple-root ones are controlled by q-Serre relations (4).

If $[3]_{q}=[2]_{q}$, the q-deformed mass formula (11) simplifies and yields

$$
\begin{equation*}
m_{\omega_{g}}+m_{\rho}=2 m_{K^{*}} \tag{12}
\end{equation*}
$$

Setting $m_{\omega_{g}} \equiv m_{\phi}$, one recognizes in equation (12) the nonet mass formula of Okubo [8]: This relation agrees perfectly with the data (up to errors of experiment and of averaging over isoplets). What are higher analogues of Okubo's relation? We put $[n]_{q}=[n-1]_{q}$, $n=4,5,6$, in equation (10) and obtain them:
$m_{\omega_{15}}+\left(5-8 /[2]_{q_{4}}\right) m_{\rho}=2 m_{D^{*}}+\left(4-8 /[2]_{q_{4}}\right) m_{K^{*}}$
$m_{\omega_{24}}+\left(9-16 /[2]_{q_{s}}\right) m_{\rho}=2 m_{D_{b}^{*}}+\left(4-8 /[2]_{q_{5}}\right)\left(m_{D^{*}}+m_{K^{*}}\right)$
$m_{\omega_{35}}+\left(13-24 /[2]_{q_{6}}\right) m_{\rho}=2 m_{D_{2}}+\left(4-8 /[2]_{q_{6}}\right)\left(m_{D_{b}}+m_{D^{*}}+m_{K^{*}}\right)$.
Here q_{n} denote the values that solve equations $[n]_{q}-[n-1]_{q}=0$, namely,

$$
\begin{equation*}
q_{n}=\mathrm{e}^{\mathrm{i} \pi k /(2 n-1)} \quad k= \pm 1, \pm 2, \ldots \ldots \tag{16}
\end{equation*}
$$

Note that the quantities $[n]_{q}-[n-1]_{q}$, being the polynomials $P_{n}(q)$ that satisfy the conditions [9] (i) $P_{n}(q)=P_{n}\left(q^{-1}\right)$, (ii) $P_{n}(1)^{\cdot}=1$, coincide (only formally?) with the Alexander polynomials $\Delta(q)\left\{(2 n-1)_{1}\right\}$ of toroidal $(2 n-1)_{1}$-knots. Namely, $[2]_{q}-1=q+q^{-1}-1 \equiv$ $\Delta(q)\left\{3_{1}\right\}$ corresponds to the trefoil (or 3_{1}) knot, $[3]_{q}-[2]_{q}=q^{2}+q^{-2}-q-q^{-1}+1 \equiv$ $\Delta(q)\left\{5_{1}\right\}$ corresponds to the 5_{1}-knot, and so on. Due to this, all the q-dependence in masses
of $\omega_{n^{2}-1}$ and in coefficients of MSRS (10) can be expressed in terms of various Alexander polynomials:

$$
\begin{aligned}
& \frac{[3]_{q}}{[2]_{q}}=1+\frac{\Delta\left\{5_{1}\right\}}{[2]_{q}}=1+\frac{\Delta\left\{5_{1}\right\}}{\Delta\left\{3_{1}\right\}+1} \\
& \frac{[4]_{q}}{[3]_{q}}=1+\frac{\Delta\left\{7_{1}\right\}}{[3]_{q}}=1+\frac{\Delta\left\{7_{1}\right\}}{\Delta\left\{5_{1}\right\}+\Delta\left\{3_{1}\right\}+1}
\end{aligned}
$$

etc. The values of (16) may be viewed as roots of respective Alexander polynomials.
The difference between (12) $(n=3)$ and (13)-(15) is manifest. At fixed $n \geqslant 4$, values of additional q-number $[2]_{q_{n}}=2 \cos \frac{k \pi}{2 n-1}$, present in (13)-(15), obviously differ for different $|k|$ in (16). However, specific data for masses [10] put into MSR (13) or (14) (with J / ψ and Υ, respectively, in place of ω_{15} and ω_{24}) can satisfy the MSR only with one value of q_{n}. For example, relation (14) holds (perfectly, up to errors of data and averaging over isoplets) just with the primitive 18 th root of unity taken for q_{5}, that is, with $k=1$. Thus, the q-deuce in MSRs (10) which originates from q-Serre relations (4), serves to 'select' a unique appropriate value of the deformation parameter from set (16). In the case of $U_{q}\left(u_{3}\right)$, q-Serre relations are out of play, so the (extra) q-deuce is absent in equation (11) and all the values $q_{3}=\mathrm{e}^{\mathrm{i} \pi k / 5}, k= \pm 1, \pm 2, \ldots$ are appropriate.

To summarize, we have demonstrated with a concrete example of application of a quantum counterpart of higher-rank Lie algebra, that q-Serre relations are important to fix the (unique) physically appropriate value of deformation parameter. Remark also that, although we use (the ($4 n-2$)th) roots of unity (16) for q, the specific representations exploited within this approach remain irreducible.

The author is thankful to Professor A U Klimyk and Dr II Kachurik for valuable discussions. This work was supported in part by Soros Humanitarian Foundations Grant awarded by the American Physical Society.

References

[1] Iwao S 1990 Progr. Theor. Phys. 83363
[2] Raychev P P, Roussev R P and Smimov Yu F 1990 J. Phys. G: Nucl. Phys. 16137 Bonatsos D et al 1990 Phys. Lett. 251B 477
Celeghini E et al 1991 Firenze preprint DFF 151/11/91
[3] Gavrilik A M 1993 Physics in Ukraine. Quantum Fields and Elementary Particles Proc. Int. Conf. (Kiev) Gavrilik A M, Tertychnyj A V Kiev preprint ITP-93-19E
[4] Yakimov G, Kalman C 1976 Lett. Nuovo Cim. 17511
[5] Gavrilik A M, Shirokov V A 1978 Yad. Fiz 28199
Gavrilik A M, Klimyk A U 1989 Symposia Mathematica 31127
[6] Novozhilov Yu V 1975 Introduction to Elementary Particle Theory (New York: Pergamon)
[7] Jimbo M 1985 Lett. Math. Phys. 1063
[8] Okubo S 1963 Phys. Lett. 5165 Gasiorowicz S 1966 Elementary Particle Theory (New York: Willey)
[9] Birman J S 1993 Bull. Amer. Math. Soc. 28253
[10] Particle Data Group 1990 Phys. Lett. 239B 1

