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LETTER TO THE EDITOR 

q8erre relations in U,(u,)and q-deformed meson mass sum 
rules 

A M Gavrili 
Institute for Theoretical Physics. 252143 Kiev, Ukraine 

Received 19 November 1993 

Abshct.  The q S m e  relations are shown to be necessary for fixing uniquely the value of 
deformation pammeters wifhin recenfly proposed applications of quantum algebra U&) in 
obtaining q-analogues of hadron mass sum rules. Coefficients in these q-analogues are expressed 
through Alexander polynomials of certain knots. 

. 

Use of the quantum algebra suq (2) in describing spectra of heavy nuclei is based on such 
requisites as the Casimir operator and Clebsch-Gordan coefficients [I-21. In attempting to 
find applications of higher-rank quantum algebras, one encounters new features absent in 
suq(2) case. One such feature is the necessity to deal with non-simple-root elements of 
those algebras or, equivalently, with q-Serre relations. A recently proposed application of 
the q-algebras U,(IL.) to obtain q-analogues of hadron mass relations E31 uses both simple- 
root elements and non-simpleroot elements. The goal of the present letter is to clarify the 
concrete role played by the qSerre relations for that specific application. 

There exist different approaches to SU(n) symmetry breaking necessary for obtaining 
mass sum rules (MSRS) for hadrons with n quark flavours. The approach based on dynamical 
unitary groups allows one to obtain [4-51 the following series of MSRs for vector mesons 
1- (2 i n  < 6): 

k- l  , k(k - 1 )  k ( k - 1 ) - 4  
mp = (k - 1)'mD; + mD; k = 3, ..., n (1) 

. +  2 i=3 
-"t2-> , 2  

where 0: denote the isodoublets 0; = K*, 0:' = D*, D; Dz and Oz.= 0;. If 
n = 3, this series begins with the famous Gell-Mann-Okubo (GMO) mass relation [6] 
3m,, +m, = 4m.p. A comparison of this octet MSR with the existing data requires mixing 
between the isosinglet 08 and the SU(3)  singlet, that is, wg is considered as a superposition 
of 4 and o with some mixing angle determined from the fit. Likewise, in cases of 'more 
flavours, n > 3, one needs n - 2 mixing angles. 

Extending that approach to quantum algebras U&".). one can derive qdeformed MSRs 
which contain equations (1) as the q = 1 limit, but which also admit (if 141 = 1 ,  q # kl) 
an alternative treatment [3] without manifest singlet mixing. Let us consider some facts. 

Quantum (universal enveloping) algebras U,(gh) are generated by the elements 1, Ajj, 

Ajj+, ,  Aj+lj ,  j = 1,2, ._., n - 1, which satisfy the relations [7] 
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and the q-Serre relations 

(Ai~~iYAii*l - IZIqAi;F~iAiiilAiy~i + Aiial (AiTli)' = 0 (4 4 
(4 b) 

where we denoted [BI4 E (4' - 4-')/(4 - 4-I). The 'compact' quantum algebra U&.) 
is singled out by means of the *-operation 

(AiidZAiTii - 121,Aii~AiyliAii*i + Aiyli(Aiiad2 = 0 

,,) -Ajj (A.  ,+I,) . * -  - Ajj+l (Ajj+l)* = Aj+lj. (5) (A..  * - 
As for the non-deformed algebra U", finite-dimensional representations of U,(U.) are given 
by sets of ordered integers m, = (nzln, m b ,  ..., m,,J and realized by means of the (q- 
analogue of) Gel'fand-Tsetlin basis and formulas. Representation formulas for Aii remain 
unchanged, and Akk+l,  Ak+lk, k = 1, ..., n - 1, act according to formulas given in [7]. To 
possess action formulas for the operators which correspond to non-simple-root elements, 
we turn to q-Sene relations (4). Defining 

Akk+Z = Akk+z(4)  E 41/zAkk+lAk+1x+z - 4-'lZAk+~k+zAak+~ (64 
Ak+z.k = Ak+z.k(4) E 41/ZAk+1rAk+z,k+1 - 4-1'2Ak+z.k++1Ak+~k (6 b) 

we find that the corresponding q-Serre relations (e.g. with upper signs in ( 4 ~ ) .  (4 a)) follow 
from the commutation NI- (CR) 

Dud definitions &+2 -Akk+z(q-'), &+ZJ E -&+z,k(4-') are paired With the 
respective dual a s .  Operators for other non-simple-root elements are treated similarly. 

e n  = M?' + ynAnn+I&+1, + SnAn+~nAnn+~ 

A mass operator commuting with the 'isospin' U,(SUZ) for 3 < n g 6 bas the form [3] 

It is Hermitean, term by term, if 4 is real. For q = eik,  h E R, Hermiticity of mass operator 
requires that yi = F j ,  6i = 81. The latter choice is preferable for us. 

With (8), using (Gelfand-Tsetlin basis) states for mesons from (n2 - 1)-plet of 'flavour' 
U&) embedded into an ((n + 1)' - 1)-plet of 'dynamical' U4(un+l), one obtains 

m,, = MO mK. = MO - YJ mf. = MO - 63 
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in the four-flavour case and analogous expressions for n~ = 5 and n = 6 (the first four 
relations in (9) reproduce also the three-flavour case). The q-dependence appears only in 
the masses of os, 015, qq, 035. Since (isodoublet) particles and their antiparticles must 
have equal masses, y3 = S,, y4 = 8, in (9), and likewise for n = 5,6. The resulting q-MSRS 
PI are 

~~ 78-1 

[ n ~ ( , )  m,, " - I  + (bn:, + 2n - 4) m,, = 2 mD: +(cn:, + z ) E m D ;  (10) 
r=3 

where the notation [n],/[n - 114 = [n1cq) is used and 

This set of q-deformed MSRS contains relations (1) at q + 1, as it should. The q-analogues 
show that the coefficients with masses are obtained from their 'classical' prototypes in a 
more complex way than simply by replacing a + [a], .  

At n =.3 equation (IO) yields the q-analogue of CMO relation: 

Here an important difference is apparent between the case of n =-3  and MSRS (IO) with 
more flavours: the q-CMO relation depends on q through the raio [3](,) only, while higher 
MSRS (n 4) contain both the ratio [n](,) and the quuntiry [Z],. This difference is caused 
by the presence of non-simpleroot elements in the mass operator (8)  in all cases except 
n = 3. As mentioned above, definitions of non-simple-root elements and rules of their 
commutation with simple-root ones are controlled by q-Serre relations (4). 

If [319 = [Z],, the q-deformed mass formula (11) simplifies and yields 

moa + mp = %K.. (12) 

Setting mag = mg, one recognizes in equation (12) the nonet mass formula of O h b o  [8] ;  
This relation agrees perfectly with the data (up to errors of experiment and of averaging 
over isoplets). What are higher analogues of Okubo's relation? We put [n], = [n - 11,' 
n = 4,5,6, in equation (10) and obtain them: 

li?qS f (5 - 8 / [ 2 1 q 4 ) i p  = 2 mD* + (4 - 8/[21q4)mK* (13) 

myI  + (13 - %/[2lq&p = 2 mD,* f (4 - 8/[2]q6)(mD5* + mD* f mK*). (15) 

Here qo denote the values that solve equations [n], - [n - 11, = 0, namely, 

f (9 - 16/[21,)m, = 2 mDb' -b (4 - 8/[z]qs)(mD* + mK*) (14) 

q n -  - k = f l ,  &Z. . . .... - (16) 

Note that the quantities [n],-[n-l],, being the polynomials P,(q) that satisfy the conditions 
[9] (i) P.(q) = Pn(q-'). (ii) Pn(l).=.l,  coincide (only formally?) with the Alexander 
polynomials A(q)[(Zn-l)t) oftoroidal (2n-l)1-knots. Namely, [2],-1 =q+q- ' - l  = 
A(q)[31) corresponds to the trefoil (or 31-) knot, [319 - [214 = q2 + q-' -'q - 4-'+ 1 
A(q)[5') corresponds to the 51-knot, and so on. Due to this, all the q-dependence in masses 
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of O,L~ and in coefficients of MSRS (10) can be expressed in terms of various Alexander 
polynomials: 

etc. The values of (16) may be viewed as roots of respective Alexander polynomials. 
The difference between (12) (n = 3) and (13)-(15) is manifest. At fixed n 2 4, values of 

additional q-number [21, = 2cos &, present in (13)-(15), obviously differ for different 
[kl in (16). However, specific data for masses [IO] put into MSR (13) or (14) (with. J/@ 
and T, respectively, in place of ~ 1 5  and a) can satisfy the MSR only with one value of 
qn. For example, relation (14) holds (perfectly, up to errors of data and averaging over 
isoplets) just with the prim’five 18th root of unity taken for 45, that is, with k = 1. Thus, 
the q-deuce in MSRs (10) which originates from q-Serre relations (4), serves to ‘select’ a 
unique appropriate value of the deformation parameter from set (16). In the case of U9(u3), 
q-Serre relations are out of play, so the (extra) q-deuce is absent in equation (11) and all 
the values q3 = einkj5, k = il, f 2 ,  . . . are appropriate. 

To summarize, we have demonstrated with a concrete example of application of a 
quantum counterpart of higher-rank Lie algebra, that q-Serre relations are important to 
fix the (unique) physically appropriate value of deformation parameter. Remark also that, 
although we use (the (4n - 2)th) roots of unity (161 for q ,  the specific representations 
exploited within this approach remain irreducible. 

The author is thankful to Professor A U Klimyk and Dr I I Kachurik for valuable discussions. 
This work was supported in part by Soros Humanitarian Foundations Grant awarded by the 
American Physical Society. 
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